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Abstract: In large buildings, during the situation of fire or other hazards, a smart evacuation guidance
system needs to fully consider manifold aspects of hazards to guide evacuees through exit gates as
fast as possible by dynamic and safe routes. In this paper, we propose a smart evacuation guidance
system with a dynamic evacuation routing approach by using the LCDT (Length-Capacity-Density-
Trustiness) weighted graph model and partial view (PV) information which represents the hazard
intensity and the crowd congestion information of a group of sections/floors in the building. The
proposed system is designed as a distributed system with multiple layers of computing by using
smart indicators. Given such a system, we develop an efficient distributed approach, so-called
LCDT&PV, to find out effective evacuation routes dynamically. We then propose an estimating
congestion strategy in order to improve the efficiency of dynamic evacuation routes. To validate the
proposed system, we implement a simulator to compare the proposed evacuation routing approach
with baseline approaches. Experimental results show that the proposed approach reduces up to
30% of the total evacuation time compared with others. Furthermore, through the results of initial
smart indicator implementation, which can interact with the simulator, we show the viability of the
proposed system.

Keywords: smart evacuation guidance system; smart indicators; smart building; intelligent evacuation
system

1. Introduction

As a result of the development of the Internet of Things (IoT) as well as many achieve-
ments of modern technology, smart buildings have been coming to reality with the support
of multiple smart devices such as smart indicators, smart sensors, and smart cameras. These
smart devices can help to build management systems to gather the essential information to
make the right decisions in emergency situations such as fire building events. In which,
emergency evacuation systems play an important role in safely evacuating people to the
exit gate as soon as possible. One of the main roles of emergency evacuation systems is
finding effective evacuation routes, which is not a trivial problem due to the uncertainty of
the hazardous conditions and the possibility of congestions, to reduce evacuation time and
help people pass through exit gates as fast as possible.

There have been several studies targeting the weighted graph based approaches using
IoT data in smart buildings to dynamically find the evacuation routes more effectively
as the situations can easily changes in such conditions [1–3]. Dimakis et al. [1] proposed
a building evacuation system that evaluated the optimal evacuation routes in real-time
based on updating the hazard intensity between decision nodes (indicators). Wong et al. [2]
proposed an optimized evacuation route algorithm based on crowd simulation using
division points that divide evacuees into two groups and evacuate in opposite directions.
Lujak et al. in [3] proposed a distributed evacuation guidance for large smart buildings with
building conditions and hazard intensity consideration based on a smart sensor network
and personal mobile devices.
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Most evacuation systems considered distributed approaches to find evacuation routes
due to massive data generated by a large number of devices (e.g., sensors, cameras) [3].
Cristóbal-Salas et al. [4] proposed a strategy using distributed client-server system to
compute the suitable routes for individuals depending on their health and their locations in
a small city. Recently, Nguyen et al. [5] proposed a distributed system by implementing the
LCDT-based (Length, Capacity, Density, and Trustiness) algorithm and a caching strategy.
The system used global view information which is about the hazard intensity and the crowd
congestion in the whole building, to build the evacuation routing algorithm. However,
there is still room for improvement, because (1) using global view information might not
be efficient for finding evacuation routes in a high-rise building (e.g., the evacuation routes
on the tenth floor might not affect congestion at the second floor in a short period of time)
and (2) implementing of weight calculation in Smart Guidance Agents might take a high cost
(i.e., processing time) due to handling of massive data gathered by cameras and sensors in
a short time.

In this paper, we present a design and implementation of an emergency evacuation
system that uses a dynamic evacuation routing approach and smart indicators as edge com-
puting nodes, and then direct the evacuees to exit gates. The proposed system is designed
as a distributed system with multiple layers of computing that provides an efficient routing
approach by using partial view information which represents the hazard intensity and the
crowd congestion information of a group of sections/floors in the building. We design
smart indicators to capture people density by applying a pre-trained convolutional neural
network model, track danger areas using temperature and smoke sensors, and show direc-
tions. The gathered information from smart indicators is provided to the Smart Guidance
Agents via a Web API for finding effective routes.

Our work as described in this paper makes the following contributions.

• An emergency evacuation system is designed with multiple computation layers using
the information provided by smart indicators.

• An approach for dynamic evacuation routing is proposed, so-called LCDT&PV, which
improves the LCDT-based approach [5] by using partial view information.

• An estimating congestion strategy is proposed to improve the efficiency of the evacua-
tion routes.

• A simulator is implemented to compare the proposed evacuation routing approach
with baseline approaches. Experimental results show that our approach reduces up to
30% of the total evacuation time compared with others.

The rest of this paper is organized as follows. Section 2 introduces the related work.
Section 3 describes terms, definitions, and modeling hazard conditions and building condi-
tions using the LCDT-based weighted graph model. Section 4 presents a smart evacuation
guidance system by using the LCDT&PV approach for dynamic evacuation routing with the
support of smart indicators. Section 5 conducts the experiments to evaluate the proposed
system. Finally, conclusions are given in Section 6.

This paper is an extension of work originally presented in The 10th International
Conference on Smart Media and Applications (SMA 2021) [6].

2. Related Work

There have been several techniques targeting the smart evacuation system. Dimakis et al. [1]
proposed a building evacuation system that computes the optimal evacuation routes in a real-time
manner. The system used smart sensors to obtain physical length and hazard intensity, then
used them to make a weighted graph. Based on network flow techniques, Dressler et al. [7]
proposed a method to determine the right exit gates for evacuees during emergency situations.
Abdelghany et al. [8] proposed a framework to evacuate people in large-scale pedestrian facilities
with multiple exit gates. Several designs of intelligent indoor emergency evacuation systems are
presented in [9–13].

There are a lot of IoT-based evacuation systems that have been developed for providing
real-time information to evacuees in case of fire events happening in the buildings [4,14–19].
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Alfredo et al. [4] took advantage of a distributed client-server system to create a strategy to
compute the suitable routes for individuals depending on their health and their locations in
a small city amid disaster events such as floods, storms, or fires. In such events, information
of each individual is collected by client software, and server computes the best routes and
recommends to evacuees via the client software. However, this strategy did not consider
hazardous conditions as well as congestion routes. Zualkernan et al. [14] proposed an
IoT-based emergency evacuation system to obtain information about situations inside a
building during a fire emergency in order to reduce turmoil and guide evacuees to safe exits.
The system utilizes smartphones to recommend safe routes for evacuees. In case evacuees
have no smartphone, the exit signs can dynamically change their state in accordance with
the situation.

Recently, there have been several studies focusing on applying AI (Artificial intel-
ligence) and ML (Machine Learning) techniques to detect fire events and find efficient
evacuation routes in the smart buildings [15,18–20]. However, these studies have a lack
of consideration in scalability of their systems due to large smart buildings. Lee et al. [15]
proposed a new paradigm to develop assistance technology, whereby the systems devel-
oped based on the paradigm using IoT sensors integrated inside the buildings to collect
data about hazard signs such as smoke or fire. The system then used a machine learning
algorithm to determine the safe routes for evacuees. Wehbe et al. [18] presented a BIM-
based smart evacuation guidance system for smart buildings which can detect fire early,
collect and analyze the hazard condition based on sensor data, and guide evacuees to the
exit with the optimal evacuation paths. Their system utilized IoT and smart technology
to detect a fire early and reduce false detection. Then, AI and ML techniques are applied
for providing the smart selection of evacuation paths in real time manner. Saini et al. [19]
proposed an intelligent evacuation system that efficiently guides evacuees to a safer lo-
cation while significantly reducing direct fire exposure by combining IoT layer, fog layer,
and cloud layer. In their system, the IoT layer can capture the hazard condition in the smart
building, and the location of evacuees to track their movements. The fog layer is employed
to detect emergency events in the buildings by applying the Support Vector Machine
(SVM) technique. Then, the cloud layer is employed an evacuation routing algorithm by
using building conditions and evacuees’ information to generate efficient routes to direct
evacuees to the exit.

Thus, although there have been many studies focusing on the design and implementa-
tion of emergency evacuation systems, the development of smart evacuation systems is
still in its infancy stage.

3. Preliminaries
3.1. Terms and Definitions

We consider a network of smart indicators in the building as an undirected graph
G = (V, E), where V is a finite set of nodes, and E is a finite set of edges, E ⊆ V × V.
A node in the graph G represents a smart indicator, called indicator node . An edge (vi, vj)
represents a route segment in the building between two adjacent smart indicators vi and vj.

To evaluate evacuation routes, we assign the evacuation costs on every edge of G. We
can define a weighted graph of G as follows.

Definition 1. Weighted graph: A graph Gw = (V, E, ω) is a weighted graph if it is an undirected
graph, and the function ω defined on E maps every edge e ∈ E to a real number.

3.2. LCDT-Based Weighted Graph Model

A weight value assigned to each edge of graph G indicates the impact of disaster
conditions and building conditions to the evacuation time on a route segment. The higher
the value of the weight, the more evacuation time is needed. In order to estimate the
weight of a route segment, we consider four factors: (1) physical length, (2) physical
width, (3) hazard intensity, and (4) people density. Obviously, physical length is a fixed
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value, and the longer the physical length, the more evacuation time is needed. For the
physical width, it is used together with physical length to model the capacity (the number
of people that can move together) of a route segment. We now consider a route segment
R(i,j) between two adjacent smart indicators vi and vj, which has the physical length L(i,j)
and the physical width H(i,j). Assume that an evacuee needs a minimum lane space X×Y
(e.g., X = Y = 1.0 m) for moving, where X, Y are the physical length and the physical
width of the lane space, respectively. Therefore, the capacity of the route segment C(i,j) can
be calculated by using Equation (1).

C(i,j) = (L(i,j)/X)× (H(i,j)/Y) (1)

Next, we consider the hazard intensity on a route segment, which is affected by a fire
event. We model it by calculating trustiness of location T(i,j) based on the data received
from a smoke sensor and a temperature sensor located at the route segment. Since this
is not the main topic of this paper, we prefer to implement a sensor-based approach for
calculating trustiness of location presented in [21]. Similarly, the density, D(i,j), on the route
segment can be obtained by implementing a CNN-based approach of people counting from
a single image captured by a camera [22].

Finally, we used LCDT model [5] to calculate the weight of every route segment R(i,j)
as shown in Equation (2).

ω(i,j) =
L(i,j)

T(i,j) × (C(i,j) − D(i,j) + 1)
(2)

In Equation (2), T(i,j) ∈ [0, 1], if T(i,j) = 1, there is no affected of disaster event on R(i,j).
In contrast, T(i,j) = 0 means that, the route segment R(i,j) has been strongly affected by
disaster event. As the result, when ω(i,j) get an infinity value, the evacuation routes should
not include R(i,j).

4. Proposed Smart Evacuation Guidance System

This section presents a design and implementation of the proposed smart evacuation
guidance system for large buildings.

4.1. Overview of System Architecture

Figure 1 presents the architecture of the proposed emergency evacuation system.
The system consists of three main modules: Smart Indicator(s), Smart Guidance Agent(s)
(SGAs), and Smart Coordinator. In which, the Smart Indicators interact with Smart Guidance
Agents via a Web API using the HTTP protocol. While Smart Guidance Agents work with
Smart Coordinator in the same application, namely Smart Guidance Application. We describe
more details about these modules as follows.

Figure 1. System Architecture.
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Smart Indicators. A smart indicator is responsible for calculating the weight of a
road segment (e.g., corridor segment) where it is located and showing the direction(s)
to guide evacuees to pass through a safe exit gate. Here, the weight of a road segment
represents the impact of building conditions and disaster conditions on that segment. We
use the temperature and smoke information gathering by Temperature Monitor module
and Smoke Monitor module. The people density on the road segment can be calculated by
implementing a convolutional neuron network based image processing [13]. The people
density calculating is performed by the Density Calculator module. For the capacity of the
road segment, we can obtain it by estimating the maximum number of people who can
move on the given segment at the same time based on the physical length and width of
that segment information stored in the Floor Info file. Supposing that a person needs at
least 1.0 square meters (m 2) of space for moving. Thus, a given road segment with 10 m
of length and 2 m of width has a capacity of 20 (people). After calculating the weight of
the road segment, smart indicators update the weight to the database by calling a REST
API. This information is used by SGAs to build a weighted graph for finding efficient
evacuation routes.

Another important role of a smart indicator is to show the direction provided by a
Smart Guidance Agent. To do this, the Guidance Director module frequently checks the sign
sent by the SGA from the Web API every a period of time (e.g., 5 s in our case).

Smart Guidance Agents. A Smart Guidance Agent is designed to control the direction
of smart indicators in a specific region (e.g., a floor). To do this, the SGA first builds a
weighted subgraph relying on the structure of a network of smart indicators in the given
floor using the information stored in the Floor Info file and the weights of road segments
sent by smart indicators under its management. Then, it runs a shortest path algorithm (e.g.,
Dijkstra algorithm) to find efficient routes from every smart indicator to stairs of the floor
its management. This step is performed by the Local Evaluator module. The Local Evaluator
also calculates and sends the weights among stairs to the Smart Coordinator module for
building weighted cross-graphs. Finally, the SGA use the Evacuation Routes Selector module
to choose the best evacuation route for its smart indicators by combining the weight from
smart indicators to stair-nodes in the floor (i.e., smart indicators located at stairs) and the
weight among stair-nodes of several floors sent by Partial Evaluator module.

Smart Coordinator. A Smart Coordinator has two main functions: (1) building weighted
cross-graphs based on the structure of network stair-nodes among several floors (e.g., each
of five floors) using the information stored in the Cross-section Info file and the weights
among stair-nodes sent by the Local Evaluators; (2) finding the shortest path from a stair-node
to other stair-nodes in the lower floors for every weighted cross-graph. This information is
used by SGA to select efficient routes for smart indicators.

Web API. We implement a Web API application to provide functions to support
updating the weight of road segments calculated by smart indicators as well as sending
the guidance directions from SGAs to the smart indicators. The Web API application is
published to a host on the Internet so that both smart indicators and SGAs can access
through the HTTP protocol. The information is packed in JSON format before sending the
request to the Web server.

4.2. Design of Smart Indicators

This section presents the implementation of smart indicators which is one of the main
units of the proposed systems. As shown in Figure 2, each indicator is composed of three
main components including a Raspberry PI, sensors, and an indicator panel. In particular,
we use Raspberry PI 3B+ https://www.raspberrypi.com/products/raspberry-pi-3-model-
b-plus/, accessed on 16 March 2022, as a central processing unit. It is responsible for
calculating the weight of a road segment by using information collected from sensors and
provided by servers. To do that, we build a Raspberry PI OS on it for performing algorithms.

https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
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Figure 2. Hardware Components of a Smart Indicator.

For sensors, we first use a USB camera to capture images which are sent to Raspberry PI
for calculating people density. Specifically, we adopt pre-trained CNN in [23] for counting
people from these images. We then use MQ135 as a gas sensor for monitoring air quality
where the smart indicator is located. This component can detect gases such as Ammonia
(NH3), sulfur (S), Benzene (C6H6), CO2, and other harmful gases and smoke. Furthermore,
we adopt a DHT11 sensor to measure temperature. This sensor has a one-wire interface
enabling easily connects to Raspberry PI.

In addition, an indicator panel is designed to show four directions corresponding to
east, west, north, and south, as shown in Figure 2. To do that, we use 37 super bright LEDs
placed into four groups and controlled by a Python program running on Raspberry PI.
Furthermore, we attach two LEDs (Red and Green) to the smart board to represent the
status of disaster events. In which, the Red LED will be ON status during the disaster event,
otherwise, it will be OFF and the Green LED will be ON. We also implement a program to
send the calculated weight of the road segment and receive the sign via REST APIs every
5 s during a fire event happen. Note that, the smartboard can connect to the Internet via
Wifi or Ethernet connection.

4.3. A Distributed Approach for Finding Dynamic Evacuation Routes Using LCDT&PV

In this section, we present a distributed approach for finding optimal evacuation
routes that provides partial view information of evacuation routes while distributing the
overall route computation to SGAs. To do this, we first define a distributed weighted
graph based on the concept of the weighted graph in the previous section. We then
propose the algorithms for local and global evaluation of evacuation routes in SGAs and
GC, respectively.

Definition 2. Distributed Weighted Graph: A distributed weighted graph, Gd, for a weighted
graph Gw = (V, E, ω) is a set of N fragments (subgraphs) {Gi = (Vi, Ei, ω)|i ≤ N} and a
cross-graph Gc = (Vc, Ec, ω), where Vi, Vc ⊂ V; Ei ⊂ E; and Ec = {(u, v)|u, v ∈ Vc}.

In our context, N subgraphs are corresponding to the number of floors in a group
of floors as well as the number of SGAs in that group. Gi represents a network of smart
indicators at the floor ith, and Gc represents a network of smart indicators located at stairs
and exit gates in the smart building.
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4.3.1. Partial Evacuation Routing Approach

In this section, we present a strategy using LCDT-based evacuation routing approach
without global view information (i.e., using the hazard intensity and the crowd congestion
in the whole building) but with partial view information (i.e., using the hazard intensity
and the crowd congestion information in a group of sections in the building). We have
a key observation is that the status of hazard intensity and crowd congestion of floor A
might not affect finding the evacuation routes in a floor B far from A (e.g., the tenth floor is
far from the second floor). Meanwhile, several adjacent floors are affected by each other.
Therefore, we improve the LCDT-based evacuation routing approach by using the partial
view information instead of the global view information. The main idea of the LCDT-based
partial evacuation routing algorithm is summarized in four main steps as the following:

• Step 1: Choose a parameter K (2 < K < N) which indicates how many sections or
floors (i.e., a large floor can be split into several sections) can be used as a group of
sections or floors for partial evaluation in the Smart Coordinator, in which N is the
number of sections or floors.

• Step 2: For each section/floor, the SGA builds a LCDT-based weighted graph for the
subgraph of indicators. Then, it runs a procedure, so-called LocalEval, to find options
of evacuation routes to from every indicator node to stair nodes.

• Step 3: For each group of sections or floors, the SC builds a weighted cross-graph.
The number of weighted cross-graphs, Cg, can be calculated by using a simple
equation below:

f (x) =

{
N/K + 1, if N%K ≥ K/2
N/K, otherwise

(3)

Thus, each cross-graph is constructed using K adjacent sections/floors except the last
cross-graph has K ± N%K sections/floors.

• Step 4: For each weighted cross-graph, the SC runs a procedure, so-called Partial-
WeightEval, to find effective routes among stair-nodes. Then, it runs a procedure,
so-called PartialDensityEval, to estimate the number of evacuees following a stair
node for each given interval. Finally, the results are sent to SGAs for selecting evacua-
tion routes.

• Step 5: Select effective routes from every smart indicator in each section/floor to the
stair-node or exit-node on the lowest floor of each section. This step is performed
by the Evacuation Routes Selectors module in SGAs by running TotalWeightEval
procedure and RoutesSelector procedure.

In the following subsections, we present the implementation of the procedures of
LCDT&PV approach in detail.

4.3.2. Implementation of Local Evaluation Algorithm

As we mentioned in the previous section, the Local Evaluator in each SGA is respon-
sible for finding the options of evacuation routes for very indicator in a given subgraph.
We have to find the effective routes from all nodes in the subgraph to stair nodes or exit
nodes. Algorithm 1 illustrates the procedure of finding the options for every indicator in a
subgraph Gi.

In Algorithm 1, we first set an empty set of next options to the NextOptions variable
of every Indicator Node in Gi. We then run the Dijkstra algorithm on the weighted graph
Gi with source nodes are a set of Stair Nodes Si, and the destination nodes are all nodes in
Vi, resulting in a complexity of O(|S| · |Ei| · log|Vi|), with |S| is the number of Stair Nodes
in the Gi (every Gi has the same number of Stair Nodes) (lines 4–5). We get the weight
and the next node from each indicator to each Stair Node during the searching by using
GetWeight function and GetNextNode function (not shown), respectively (lines 7–8). These
information are kept to be used for selecting the final evacuation route for each indicator
in Evacuation Route Selection phase (line 9). Furthermore, the weights among pairwise of
Stair Nodes are calculated and stored in a weight matrix W (lines 10–12). The matrix W
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represents the weighted-based shortest distances between Stair Nodes in Si (i > 1) or from
Stair Nodes to Exit Nodes in case of evaluation on G1 (exit gates on the first floor). Once the
local evaluation phase is done, W is sent to the Smart Coodinator.

Algorithm 1 LocalEval—Local Evaluation

Input: A subgraph Gi = (Vi, Ei, Si) with Si is a set of stair nodes
Output: W is a matrix which contains the weight between pairs of stair nodes.

1: for each v in Vi do
2: v.NextOptions← ∅;
3: end for
4: for each s in Si do
5: T← Dijkstra(s, Gi); // T: Shortest Path Tree
6: for each v in Vi do
7: w(v,s) ← GetWeight(v,s,T);
8: u← GetNextNode(v,s,T);
9: v.NextOptions.Add(< u, w(v,s), s >);

10: if (v ∈ Si and v 6= s) then
11: W(s,v) ← w(v,s);
12: end if
13: end for
14: end for
15: return W;

4.3.3. Implementation of Partial Evaluator Module

This module performs evaluation of the effective evacuation routes from every Stair
Node to every Exit Node. The module runs two main procedures: PartialWeightEval and
PartialDensityEval. The idea of PartialWeightEval in Algorithm 2. The input of this algorithm
is a cross-graph, Gc, which is built as the following: (1) each Exit Node e is connected to
every Stair Node in G1; (2) each Stair Node in Gi, where i > 1, will be connected to each other;
(3) the connections among Stair Nodes in two adjacent floors are set up based on layout
information of the building which is stored in Cross-Section Info component of SC; (4) the
weights of the edges in Gc are assigned based on the cost matrices W received from SGAs.
After constructing the cross-graph, we apply the Dijkstra algorithm to find the effective
evacuation routes from every Exit Node to all Stair Nodes in Gc (lines 1–2). The weights from
from every Stair Node to every Exit Node are calculated and stored in a weight matrix ω
(lines 3–4). These weights will be sent back to the corresponding SGA.

Algorithm 2 PartialWeightEval—Partial Weight Evaluation

Input: Gc = (Vc, Ec); Φ is a set of exit nodes and Φ ∈ Vc
Output: ω is a matrix which contains the weights from stair nodes to exit nodes.

1: for each e in Φ do
2: Tc ← Dijkstra(e, Gc);
3: for each s in Vc \Φ do
4: weight← GetWeight(s,e,Tc);
5: ω(s,e) ← weight;
6: end for
7: end for
8: return ω;
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Next, the PartialDensityEval procedure performs the estimation of the number of
evacuees following a stair node (1) passing through the exit nodes and (2) remaining
between the stair node and the exit node, after each interval, ∆t. These data are important
in selecting evacuation routes in the later step, because selecting evacuation routes based
on current status only might cause a congestion in the near future (after ∆t). Therefore,
the effective evacuation routes will help a lot of evacuees passing through exit nodes and
reduce the number of evacuees going into crowed areas.

Algorithm 3 presents the implementation of the PartialDensityEval procedure. The in-
put of this algorithm includes a weighted cross-graph, Gc = (Vc, Ec); Φ is a set of exit nodes;
ω is a set of weight on Ec; D is a set of people density on Ec; ∆t is the update interval.
The output consists of (1) a matrix ∆D containing the number of evacuees from the previous
nodes of every stair node v passing through every exit node e after ∆t and (2) a matrix Θ
containing the number of evacuees from the previous nodes of every stair node v remaining
from v to every exit node e after ∆t. Firstly, we run a Dijkstra algorithm to find out the
shortest path tree from every exit node (line 1–2). Then, for each stair node v in Vc \ Φ,
we estimate the number of evacuees following v, which will pass through exit nodes or
remain on route segment from v to exit nodes, after ∆t. To do that, we estimate the length
in which evacuees can run after ∆t with an average velocity, v (e.g., v = 3.0 m/s) along
with a speed reduction parameter, α, depending on the weight of route segment (line 8).
There are three main case of estimation: (1) all of evacuees from a previous node of v pass
through a exit note e (lines 9–11); (2) a portion of evacuees from a previous node of v pass
through a exit note e (lines 12–20); (3) no evacuees from a previous node of v pass through
a exit note e (lines 21–27). Note that, the estimated number of evacuees from all previous
nodes of v passing through e or remaining in (v, e) are summed up into ∆D(v,e) and Θ(v,e),
respectively (line 30–31). Finally, the results are returned to the ∆D and Θ.

4.3.4. Implementation of Evacuation Routes Selector

This is the last phase in finding the optimal evacuation routes, and it is illustrated in
Algorithms 4 and 5.

Algorithm 4 calculates the weight-based distances from each node v ∈ Vi to all exit
nodes based on the weight matrices W and ω (lines 1–7). The result is return to the weight
matrix W (line 8).

Algorithm 5 selects the next indicator for each indicator node based on its point to the
exit nodes. The point from an indicator to an exit node is calculated based on the weight-
based point and the density-based point (lines 3–8). Here, Wmin

(v) is the minimum value of
weights from the indicator v to exit nodes; ∆Dmax

(s) is the maximum value of the number of

evacuees from previous nodes of stair node s passing through exit nodes; Θ(s)min is the
minimum value of the number of evacuees from previous nodes of stair node s going into
route segments (v, e). For each indicator node v, the next indicator is selected based on the
highest point from v to the exit nodes (lines 9–11).
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Algorithm 3 PartialDensityEval—Partial Density Evaluation

Input: Gc = (Vc, Ec); Φ is a set of exit nodes; ω is a set of weight on Ec; D is a set of people
density on Ec; ∆t is the update interval.

Output: ∆D is a matrix containing the number of evacuees from the previous nodes of
every stair node v passing through every exit node e after ∆t; Θ is a matrix containing
the number of evacuees from the previous nodes of every stair node v remaining from
v to every exit node e after ∆t.

1: for each e in Φ do
2: Tc ← Dijkstra(e, Gc); // Shortest Path Tree
3: for each v in Vc \Φ do
4: ∆D(v,e) ← 0; Θ(v,e) ← 0;
5: v.preNodes← GetPreNodes(v, Tc);
6: for each u in v.preNodes do
7: L(u,e) ← L(u,v) + L(v,e);

8: ∆L(u,e) ← v.
(

1− α.
ω(u,v)+ω(v,e))

2

)
.∆t;

9: // all evacuees between node u and node v pass through e
10: if (∆L(u,e) > L(u,e)) then
11: ∆D(u,e) ← D(u,v);
12: else
13: // if having evacuees pass through e
14: if (∆L(u,e) > L(v,e)) then

15: ∆D(u,e) ←
∆L(u,e)−L(v,e)

L(u,v)
.D(u,v);

16: if (∆L(u,e) > L(u,v)) then
17: Θ(v,e) ← D(u,v) − ∆D(u,e);
18: else
19: Θ(v,e) ←

L(v,e)
L(u,v)

.D(u,v);
20: end if
21: //if having no evacuees pass through e
22: else
23: if (∆L(u,e) > L(u,v)) then
24: Θ(u,e) ← D(u,v);
25: else
26: Θ(u,e) ←

∆L(v,e)
L(u,v)

.D(u,v);
27: end if
28: end if
29: end if
30: ∆D(v,e) ← ∆D(v,e) + ∆D(u,e);
31: Θ(v,e) ← Θ(v,e) + Θ(u,e);
32: end for
33: end for
34: end for
35: return ∆D, Θ
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Algorithm 4 TotalWeightEval—Total Weight Evaluation

Input: Gi = (Vi, Ei), w is the weight matrix on Gi, {ω(s,e)}, with s ∈ Si and e ∈ Φ.
Output: W: a matrix representing weights from every indicator node to every every exit

note.
1: for each v in Vi \Φ do
2: for each opt in v.NextOptions do
3: for each e in Φ do
4: W(v,opt,e) ← w(v,opt) + opt.weight2S + ω(opt.s, e);
5: end for
6: end for
7: end for
8: return W;

Algorithm 5 RoutesSelector—Evacuation Routes Evaluation

Input: Vi; Φi ; W; ∆D; Θ
Output: The next nodes for all indicator nodes in Vi

1: for each v in Vi \Φi do
2: for each e in Φi do
3: P(v,e) ← 0;
4: for each opt in v.NextOptions do
5: s← opt.s

6: PW
(v,e) ←

Wmin
(v)

W(v,opt,e)
;

7: PD
(v,e) ←

1
2 .
(

∆D(s,e)
∆Dmax

(s)
+

Θmin
(s) +1

Θ(s,e)+1

)
;

8: point← β.PW
(v,e) + (1− β).PD

(v,e);
9: if (point > P(v,e)) then

10: P(v,e) ← point;
11: v.next← opt;
12: end if
13: end for
14: end for
15: end for

4.4. Implementation of Communication Module

We implement a Web API application to provide functions to support updating the
weight of road segments calculated by smart indicators as well as sending the guidance
directions from SGAs to the smart indicators as shown in Tables 1 and 2.

Table 1. Description of Indicators APIs.

API Description

GET api/Indicators/GetIndicators Get information of all indicators
GET api/Indicators/GetIndicator/{id} Get information of a specific indicator
PUT api/Indicators/PutIndicators Update information for a list of indicators
PUT api/Indicators/PutIndicator/{id} Update information for a specific indicator
POST api/Indicators/PostIndicator Add a indicator to the database

DELETE api/Indicators/DeleteIndicator/{id} Delete a specific indicator from the list
of indicators

PUT api/Indicators/UpdateDirections Update directions for a list of indicators
PUT api/Indicators/UpdateConditions Update conditions for a list of indicators
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Table 2. Description of Conditions APIs.

API Description

GET api/Conditions/GetConditions Get information about temperature, smoke, amout of
people that captured by indicators

GET api/Conditions/GetCondition/{id} Get information about temperature, smoke, amout of
people that captured by a specific indicator

PUT api/Conditions/PutCondition/{id} Update information about temperature, smoke,
amout of people that captured by a specific indicator

POST api/Conditions/PostCondition Add information about temperature, smoke, amout
of people that captured by a specific indicator

DELETE api/Conditions/DeleteCondition/{id} Delete all conditions related to a given indicator

5. Evaluation and Results

We implemented a simulator as a Smart Guidance Application to show how the
proposed system works. In this application, we implemented the LCDT-based evacuation
routing algorithms using partial view information including the LCDT&PV basic approach
and an improved approach with density estimation, namely LCDT&PV + DE approach. To
evaluate the efficiency of the proposed approaches, we also re-implemented the baseline
approaches including the LCDT-based evacuation routing algorithm using global view
information, namely LCDT&GV [5]; Shortest-Path-Length based approach using the nearest
stairs to pass through exits, namely Nearest Stairs; Length-Capacity-based approach which
was mentioned in [2], namely LC; and Length-Trustiness-based approach [1], namely LT.
These methods use the weighted graph models for finding effective evacuation routes,
but they are different in weighting methodology. Specifically, the Nearest Stairs approach
uses only physical length from indicators to stairs in a building as the weights on the
weighted graph. Meanwhile, the LT approach considers both the physical length and the
hazard intensity (trustiness of location) of the road segments to assign the weights for
the weighted graph. For the LC approach, the physical length and the capacity of the
road segments are used to build the weighted graph. For the LCDT-based approaches, we
assign the weights for the weighted graph by using the physical length, capacity, density,
and trustiness of the road segments. While the LCDT&GV approach takes the relation of all
regions (floors) in a building into account, the LCDT&PV approach considers the relation
of a few adjacent regions in a building along with an estimating congestion strategy to
provide relevant information to find evacuation routes. Furthermore, we also implemented
and deployed a smart indicator that interacts with the simulator.

We simulate a synthetic building with ten-story (ten floors). Each has four stair gates
and 187 smart indicators, and the first floor has three exit gates as shown in Figure 3.
The area of each floor is approximately 8300 square meters. We simulate a fire event that
affected a stair on the first floor as well as two exit gates and their close regions. We
assign randomly trustiness values in the range [0.2, 0.8] for road segments affected by the
fire event. We also simulate the fire spreading by randomly updating trusted values and
expanding the affected regions. We generate 2000 objects simulating people in the building.
The location of people is generated randomly near the locations of smart indicators. We
choose the interval for updating the status of every smart indicator to be 10s. The moving
step of people is updated every 200 ms.
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Figure 3. An Evacuation Guidance Simulator.

Figure 4 illustrates the comparison of the LCDT&PV approach and the LCDT&PV +
DE approach with other baseline approaches. We found that the LCDT&PV approaches
are more effective than others overall. Specifically, to guide all people passing through
exit gates, the needed simulation times are 352 s, 371 s, 406 s, 468 s, 498 s, and 509 s
corresponding to LCDT&PV + DE, LCDT&PV, LCDT&GV, LT, LC, and Nearest Stairs,
respectively. Thus, our LCDT&PV approach can save approximately 8% to 25% of the
total evacuation time compared to other baseline approaches. Meanwhile, the LCDT&PV
+ DE approach can improve 5% of the total evacuation time compared to the LCDT&PV
basic approach.
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Figure 4. Comparison of the effectiveness between the LCDT&PV and other baseline approaches.
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We also run experiments with varied K for partial evaluation in the LCDT&PV ap-
proach. The experimental results are described in Figure 5. We can see that the effectiveness
of our LCDT&PV approach is slightly different between the values of K. In this case, K
equals 3 is the best choice to run our LCDT&PV algorithm. In practice, identifying a suitable
K for partial evaluation depends on several information such as the area of the buildings,
the distribution of people in the building, and the impact of the fire event.
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Figure 5. Comparison of the effectiveness with varied K in the LCDT&PV approach.

6. Conclusions

This paper presented a design and implementation of an emergency evacuation system
that uses a dynamic evacuation routing approach and smart indicators as edge computing
nodes, and then directs the evacuees to exit gates. While most traditional building evacua-
tion guidance systems are concerned with routing based on the physical length of the road
segment, the proposed system uses a dynamic routing approach that not only generates
effective routes for evacuees but also quickly updates routes as the disaster status and
the crowd congestion could change during the evacuation time. Moreover, the proposed
system is designed as a distributed system with multiple layers of computing that provides
an efficient routing approach using partial view information which represents the hazard
intensity and the crowd congestion information of a group of sections/floors in the building.
To achieve this, we first designed the architecture of a smart evacuation guidance system
for large buildings. We then implemented smart indicators to capture people density using
a pre-trained convolutional neural network model, tracked danger areas using temperature
and smoke sensors, and showed directions. The gathered information from smart indicators
was provided to the Smart Guidance Agents via a Web API for finding effective routes. Most
importantly, an estimating congestion strategy was proposed to improve the efficiency
of the evacuation routes. Finally, we implemented a simulator to compare the proposed
evacuation routing approach with baseline approaches. Experimental results showed that
the proposed approach reduces up to 30% of the total evacuation time compared with
others. Through the results of initial smart indicator implementation, we showed the
viability of the proposed system.
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